On L^{q} Norm Inequalities of Polynomial

Barchand Chanam
Associate Professor, National Institute of Technology Manipur, Manipur, India
barchand_2004@yahoo.co.in

Abstract:

If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n which does not vanish in $|z|<t, t \geq 1$, then for $0<r \leq \rho \leq t$, Dewan and Mir [Int. J. Math. Math. Scs., 16(2005), 2641-2645] proved

$$
\begin{aligned}
& \max _{|z|=\rho}\left|f^{\prime}(z)\right| \leq n \frac{(\rho+t)^{n-1}}{(t+r)^{n}} \max _{|z|=r}|f(z)| \\
& \times\left\{1-\frac{t(t-\rho)\left(n\left|c_{0}\right|-t\left|c_{1}\right|\right) n}{\left(t^{2}+\rho^{2}\right) n\left|c_{0}\right|+2 t^{2} \rho\left|c_{1}\right|}\left(\frac{\rho-r}{t+\rho}\right)\left(\frac{t+r}{t+\rho}\right)^{n-1}\right\} .
\end{aligned}
$$

In this paper, we prove an interesting improved L^{q} norm inequality with the value of t extending from $t \geq 1$ to $t>0$ of the above inequality. Our result also gives some interesting known results as corollaries.

1. INTRODUCTION

Let $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ be a polynomial of degree n and $f^{\prime}(z)$ be its derivative. We define

$$
\begin{equation*}
\|f\|_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}, 0<q<\infty \tag{1.1}
\end{equation*}
$$

If we let $q \rightarrow \infty$ in the above equality and make use of of the well-known fact from analysis [17] that

$$
\lim _{q \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}=\max _{|z|=1}|f(z)|
$$

we can suitably denote

$$
\|f\|_{\infty}=\max _{|z|=1}|f(z)| .
$$

Similarly, one can define $\|f\|_{0}=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\}$ and show that $\lim _{q \rightarrow 0+}\|f\|_{q}=\|f\|_{0}$. It would be of further interest that by taking limits as $q \rightarrow 0+$, the stated result holding for $q>0$, holds fo $q=0$ as well.

For $\quad r>0$, we denote by $M(f, r)=\max _{|z|=r}|f(z)|$ and accordingly $\|f\|_{\infty}=\max _{|z|=1}|f(z)|=M(f, 1)$.

A famous result due to Bernstein [14 or also see 19] states that if $f(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{\infty} \leq n\|f\|_{\infty} \tag{1.2}
\end{equation*}
$$

Inequality (1.2) can be obtained by letting $q \rightarrow \infty$ in the inequality

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{q} \leq n\|f\|_{q} \tag{1.3}
\end{equation*}
$$

Inequality (1.3) for $q \geq 1$ is due to Zygmund [20]. Arestov [1] proved that (1.3) remains valid for $0<q<1$ as well.

If we restrict ourselves to the class of polynomials having no zero in $|z|<1$, then inequalities (1.2) and (1.3) can be respectively improved by

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{\infty} \leq \frac{n}{2}\|f\|_{\infty} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{q} \leq \frac{n}{\|1+z\|_{q}}\|f\|_{q}, q>0 \tag{1.5}
\end{equation*}
$$

Inequality (1.4) was conjectured by Erdös and later verified by Lax [12], whereas, inequality (1.5) was proved by de-Bruijn [4]
for $q \geq 1$. Rahman and Schmeisser [16] showed that (1.5) remains true for $0<q<1$.

As a generalization of (1.4), Malik [13] proved that if $f(z)$ does not vanish in $|z|<t, t \geq 1$, then

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{\infty} \leq \frac{n}{1+t}\|f\|_{\infty} \tag{1.6}
\end{equation*}
$$

Under the same hypotheses of the polynomial $p(z)$, Govil and Rahman [8] extended inequality (1.6) to L^{q} norm by showing that

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{q} \leq \frac{n}{\|t+z\|_{q}}\|f\|_{q}, q \geq 1 \tag{1.7}
\end{equation*}
$$

It was shown by Gardner and Weems [7] and independently by Rather [17] that (1.7) also holds for $0<q<1$.

Further, as a generalization of (1.6), Bidkham and Dewan [3] proved that if $f(z)$ is a polynomial of degree n having no zero in $|z|<t, t \geq 1$, then for $1 \leq r \leq t$,

$$
\begin{equation*}
\left\|f^{\prime}(r z)\right\|_{\infty} \leq n \frac{(r+t)^{n-1}}{(1+t)^{n}}\|f\|_{\infty} \text { for } 1 \leq r \leq t \tag{1.8}
\end{equation*}
$$

For the same class of polynomials $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$, by involving certain coefficients, Dewan and Mir [5] improved as well as generalized inequality (1.8) by proving

$$
\begin{align*}
& \left\|f^{\prime}(\rho z)\right\|_{\infty} \leq n \frac{(\rho+t)^{n-1}}{(r+t)^{n}} \\
& \times\left\{1-\frac{t(t-\rho)\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right) n}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\left(\frac{\rho-r}{t+\rho}\right)\left(\frac{t+r}{t+\rho}\right)^{n-1}\right\}\|f(r z)\|_{\infty} \tag{1.9}
\end{align*}
$$

for $0 \leq r \leq \rho \leq t$.

In this paper, we prove an improved inequality in L^{q} norm for extended value of $t>0$, which not only reduces to L^{q} version of inequality (1.9) as a particular case, but also gives some interesting known results as corollaries. More precisely, we prove

Theorem. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0 \leq r \leq \rho \leq t$ and any $q>0$,

$$
\begin{array}{r}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq n T_{q}\left\{\frac { 1 } { 2 \pi } \int _ { o } ^ { 2 \pi } \left[\left|f\left(r e^{i \theta}\right)\right|+M(f, r)\right.\right. \\
\left.\left.\times\left\{\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right\}\right]^{q} d \theta\right\},
\end{array}
$$

where
$T_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|t+\rho e^{i \alpha}\right|^{q} d \alpha\right\}^{-\frac{1}{q}}$.
Remark 1.1. If we let $q \rightarrow \infty$ on both sides of inequality (1.10) of our theorem, as mentioned earlier, we obtain an improved counterpart of inequality (1.9) as given below.

Corollary 1.1. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0 \leq r \leq \rho \leq t$.
$\left\|f^{\prime}(\rho z)\right\|_{\infty} \leq \frac{n}{\rho+t}\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}\|f(r z)\|_{\infty}$.

Remark 1.2. If $0 \leq r<\rho \leq t$, we have

$$
\begin{gather*}
1-\left(\frac{t+r}{t+\rho}\right)^{n}=\frac{(\rho-r)}{(\rho+t)\left\{1-\left(\frac{r+t}{\rho+t}\right)\right\}}\left\{1-\left(\frac{t+r}{t+\rho}\right)^{n}\right\} \\
=\left(\frac{\rho-r}{t+\rho}\right)\left\{\left(\frac{t+r}{t+\rho}\right)^{n-1}+\left(\frac{t+r}{t+\rho}\right)^{n-2}+\ldots \ldots+\left(\frac{t+r}{t+\rho}\right)+1\right\} \\
\geq\left(\frac{\rho-r}{t+\rho}\right) n\left(\frac{t+r}{t+\rho}\right)^{n-1} . \tag{1.12}
\end{gather*}
$$

Also, for $r=\rho$, inequality (1.12) holds trivially and hence inequality (1.12) is true for $0 \leq r \leq \rho \leq t$. By Lemma 2.10, we have

$$
\begin{aligned}
&\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}} \leq \frac{\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)(\rho+t)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}} \\
& \times\left\{\left(\frac{\rho+t}{r+t}\right)^{n}-1\right\}+1 \\
& \leq\left(\frac{\rho+t}{r+t}\right)^{n}\left[1-\left\{\frac{t(t-\rho)\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\right\}\right. \\
&\left.\times\left\{1-\left(\frac{t+r}{t+\rho}\right)^{n}\right\}\right]
\end{aligned}
$$

(by Lemma 2.9)

$$
\begin{aligned}
\leq & \frac{(\rho+t)^{n}}{(r+t)^{n}}\left\{1-\frac{t(t-\rho)\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right) n}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\right. \\
& \left.\times\left(\frac{\rho-r}{t+\rho}\right)\left(\frac{t+r}{t+\rho}\right)^{n-1}\right\}[\text { by inequality(1.12)] }
\end{aligned}
$$

It is interesting that by using this inequality in inequality (1.10), we obtain the direct L^{q} analogue of (1.9) due to Dewan and Mir [5] with extended value of the radius t of the zero free open disc from $t \geq 1$ to $t>0$.

Corollary 1.2. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0 \leq r \leq \rho \leq t$ and any $q>0$,
$\left\|f^{\prime}(\rho z)\right\|_{q} \leq n T_{q} \||f(r z)|+M(f, r)\left\{\frac{(\rho+t)^{n}}{(r+t)^{n}}\right.$
$\left.\times\left\{1-\frac{t(t-\rho)\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right) n}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\left(\frac{\rho-r}{t+\rho}\right)\left(\frac{t+r}{t+\rho}\right)^{n-1}\right\}-1\right\} \|_{q}$,
where
$T_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|t+\rho e^{i \alpha}\right|^{q} d \alpha\right\}^{-\frac{1}{q}}$.

Remark 1.3. Taking limit as $q \rightarrow \infty$ on both sides of (1.14), we obtain inequality (1.9).

Remark 1.4. If we use the fact that $\left|f\left(r e^{i \theta}\right)\right| \leq M(f, r)=\|f(r z)\|_{\infty}$ for \quad each $\theta \in[0,2 \pi)$, we obtain another improved version of inequality (1.9) in L^{q} norm deduced from our theorem.

Corollary 1.3. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0 \leq r \leq \rho \leq t$ and any $q>0$,

$$
\left\|f^{\prime}(\rho z)\right\|_{q} \leq n T_{q}\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}\|f(r z)\|_{\infty}
$$

where

$$
T_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|t+\rho e^{i \alpha}\right|^{q} d \alpha\right\}^{-\frac{1}{q}}
$$

Remark 1.5. Putting $r=1$ and replacing ρ by r in corollary 1.3, we have an improvement of (1.8). Further, putting $1=r=\rho$, corollary 1.2 reduce to inequality (1.7). Also assigning $1=r=\rho=k$, both the theorem and corollary 1.2 reduce to the well-known de- Bruijn inequality (1.5).

2. LEMMA

The following lemmas are needed for the proof of the theorem.
Lemma 2.1. If $f(z)=\sum_{v=1}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq \frac{n}{1+t} \max _{|z|=1}|f(z)| . \tag{2.1}
\end{equation*}
$$

This result is due to Malik [13].

Lemma 2.2. If $f(z)=\sum_{v=1}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t \geq 1$, then for $|z|=1$,

$$
\begin{equation*}
t|f(z)| \leq\left|g^{\prime}(z)\right| \tag{2.2}
\end{equation*}
$$

where $g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$.
Malik [13, Lemma 3] proved this lemma.
Lemma 2.3. If $f(z)=\sum_{v=1}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t \geq 1$, then

$$
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq n \frac{n\left|c_{0}\right|+t^{2}\left|c_{1}\right|}{\left(1+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right|} \max _{|z|=1}|f(z)| .
$$

This result was proved by Govil at. el. [9].
Lemma 2.4. If $f(z)=c_{0}+\sum_{v=\mu}^{n} c_{v} z^{v}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zero in $|z|<t, t \geq 1$, then

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{c_{\mu}}{c_{0}}\right| t^{\mu} \leq 1 \tag{2.4}
\end{equation*}
$$

Lemma 2.3 is due to Qazi [15, Remark 1].
Lemma 2.5. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then the function

$$
\begin{equation*}
p(x)=\frac{\left(n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}\right)(t+x)}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2\left|c_{1}\right| t^{2} x} \tag{2.5}
\end{equation*}
$$

is a non-decreasing function of x in $(0, t]$.

Proof of Lemma 2.5. We prove this by derivative test. Now, we have

$$
\begin{gathered}
p^{\prime}(x)=\frac{\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right)}{\left\{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x\right\}^{2}} \\
\times\left\{(t-x) t\left(n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}\right)+\left(n\left|c_{0}\right|+\left|c_{1}\right| t\right)\left(t^{2} x+t^{3}\right)\right\}
\end{gathered}
$$

which is non-negative, since by Lemma 2.4 , for $\mu=1$, $\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right) \geq 0$, and the fact that $x \leq t$.
【Lemma 2.6. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$ then for $0 \leq r \leq \rho \leq t$,

$$
\begin{equation*}
\max _{|z|=\rho}|f(z)| \leq\left(\frac{\rho+t}{r+t}\right)^{n} \max _{|z|=r}|f(z)| \tag{2.6}
\end{equation*}
$$

This lemma is due to Jain [10].
Lemma 2.7. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$ then for $0 \leq r \leq \rho \leq t$,

$$
\begin{equation*}
\max _{|z|=\rho}|f(z)| \leq\left(\frac{\rho^{2}+t^{2}+2 t \rho|\delta|}{r^{2}+t^{2}+2 t r|\delta|}\right)^{\frac{n}{2}} \max _{|z|=r}|f(z)| \tag{2.7}
\end{equation*}
$$

where

$$
\delta=\frac{t c_{1}}{n c_{0}} \text { and }|\delta| \leq 1
$$

This lemma was proved by Jain [11, see Remark 1]. Further, he mentioned that the function $\frac{\rho^{2}+t^{2}+2 t \rho|\delta|}{r^{2}+t^{2}+2 t r|\delta|}$ is a decreasing function of $|\delta|$ in $[0,1]$ and as $|\delta| \leq 1$, it is concluded that

$$
\begin{equation*}
\left(\frac{\rho^{2}+t^{2}+2 t \rho|\delta|}{r^{2}+t^{2}+2 t r|\delta|}\right)^{\frac{n}{2}} \leq\left(\frac{\rho+t}{r+t}\right)^{n} \tag{2.8}
\end{equation*}
$$

which clearly implies that the bound of Lemma 2.7 improves over that of Lemma 2.6.
Lemma 2.8. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0 \leq r \leq \rho \leq t$, $\left|f\left(\rho e^{i \theta}\right)\right| \leq\left|f\left(r e^{i \theta}\right)\right|+M(f, r)$

$$
\begin{equation*}
\times\left[\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right] \tag{2.9}
\end{equation*}
$$

Proof of Lemma 2.8. Since $f(z)$ does no vanish in $|z|<t$, $t>0$, the polynomial $F(z)=f(x z)$ where $0<x \leq t$ has no zero in $|z|<\frac{t}{x}$, where $\frac{t}{x} \geq 1$. Hence applying Lemma 2.3 to the polynomial $F(z)$, we get
$\max _{|z|=1}\left|F^{\prime}(z)\right| \leq n\left[\frac{n\left|c_{0}\right|+\left|c_{1} x\right|\left(\frac{t}{x}\right)^{2}}{\left\{1+\left(\frac{t}{x}\right)^{2}\right\} n\left|c_{0}\right|+2\left|c_{1} x\right|\left(\frac{t}{x}\right)^{2}}\right] \max _{|z|=1}|F(z)|$, which implies

$$
\max _{|z|=x}\left|f^{\prime}(z)\right| \leq n\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\} \max _{|z|=x}|f(z)|
$$

Now, for $0<r \leq \rho \leq t$ and $0 \leq \theta<2 \pi$, we have on using (2.10)

$$
\begin{aligned}
\mid f\left(\rho e^{i \theta}\right)- & f\left(r e^{i \theta}\right)\left|\leq \int_{r}^{\rho}\right| f^{\prime}\left(x e^{i \theta}\right) \mid d x \\
& \leq \int_{r}^{\rho} n\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\} \max _{|z|=x}|f(z)| d x
\end{aligned}
$$

which on applying Lemma 2.7 gives

$$
\begin{align*}
& \quad\left|f\left(\rho e^{i \theta}\right)-f\left(r e^{i \theta}\right)\right| \leq \int_{r}^{\rho} n\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\} \\
& \times\left(\frac{x^{2}+t^{2}+2 t x|\delta|}{r^{2}+t^{2}+2 t r|\delta|}\right)^{\frac{n}{2}} M(f, r) d x \tag{2.11}\\
& =n M(f, r) \int_{r}^{\rho}\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\} \\
& \times\left(\frac{x^{2}+t^{2}+2 t x|\delta|}{r^{2}+t^{2}+2 t r|\delta|}\right)^{\frac{n}{2}} d x \tag{2.12}
\end{align*}
$$

Substituting the value of $\delta=\frac{t c_{1}}{n c_{0}}$, (2.12) is equivalent to

$$
\begin{aligned}
& \left|f\left(\rho e^{i \theta}\right)-f\left(r e^{i \theta}\right)\right| \leq n M(f, r) \\
& \times \int_{r}^{\rho}\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\}\left\{\frac{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2} r\left|c_{1}\right|}\right\} d x \\
& =\frac{n M(f, r)}{\left(\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2} r\left|c_{1}\right|\right)^{\frac{n}{2}}} \\
& \quad \times \int_{r}^{\rho}\left\{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x\right\}^{\frac{n}{2}-1}\left(n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}\right) d x
\end{aligned}
$$

$$
=M(f, r)\left[\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right]
$$

from which it is implied by triangle inequality that

$$
\begin{aligned}
\left|f\left(\rho e^{i \theta}\right)\right| \leq \mid f & \left(r e^{i \theta}\right) \mid+M(f, r) \\
& \times\left[\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right]
\end{aligned}
$$

which completes the proof of Lemma 2.8.
Lemma 2.9. If $f(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0<r \leq \rho \leq t$,

$$
\begin{aligned}
& \frac{(\rho+t)\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\left\{\left(\frac{\rho+t}{r+t}\right)^{n}-1\right\}=\left(\frac{\rho+t}{r+t}\right)^{n} \\
& \times\left[1-\left\{\frac{t(t-\rho)\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\right\}\left\{1-\left(\frac{t+r}{t+\rho}\right)^{n}\right\}\right]-1
\end{aligned}
$$

Proof of Lemma 2.9. We have

$$
\begin{align*}
& \frac{(\rho+t)\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\left\{\left(\frac{\rho+t}{r+t}\right)^{n}-1\right\}=\left(\frac{\rho+t}{r+t}\right)^{n} \\
& \times\left\{1-\left(\frac{t+r}{t+\rho}\right)^{n}\right\}\left\{\frac{(\rho+t)\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\right\} \tag{2.13}
\end{align*}
$$

Now

$$
\begin{equation*}
\left\{\frac{(\rho+t)\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\right\}=1-\left\{\frac{t(t-\rho)\left(n\left|c_{0}\right|-\left|c_{1}\right| t\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\right\} . \tag{2.14}
\end{equation*}
$$

Using (2.14) in the right hand side (2.13), we get the required result.

Lemma 2.10. If $f(z)=\sum_{v=0}^{n} c v^{z}{ }^{v}$ is a polynomial of degree n having no zero in $|z|<t, t>0$, then for $0<r \leq \rho \leq t$,

$$
\begin{aligned}
& {\left[\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right]} \\
& \quad \leq \frac{\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)(\rho+t)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\left\{\left(\frac{\rho+t}{r+t}\right)^{n}-1\right\}
\end{aligned}
$$

where δ is as defined in Lemma 2.7.

Proof of Lemma 2.10.

Consider the integral

$$
\begin{equation*}
I=\int_{r}^{\rho} n\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\}\left(\frac{x^{2}+t^{2}+2 t x|\delta|}{r^{2}+t^{2}+2 t r|\delta|}\right)^{\frac{n}{2}} d x \tag{2.15}
\end{equation*}
$$

By inequality (2.8) of Lemma 2.7, we have

$$
\left(\frac{x^{2}+t^{2}+2 t x|\delta|}{r^{2}+t^{2}+2 t r|\delta|}\right)^{\frac{n}{2}} \leq\left(\frac{t+x}{t+r}\right)^{n}
$$

using this inequality in (2.15), we obtain

$$
\begin{align*}
& I \leq \int_{r}^{\rho} n\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| x}\right\}\left(\frac{t+x}{t+r}\right)^{n} d x \\
& =\frac{n}{(r+t)^{n}} \int_{r}^{\rho}\left\{\frac{n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| t}\right\}(x+t)^{n} d x . \tag{2.16}
\end{align*}
$$

For $0<r \leq x \leq \rho \leq t$, by Lemma 2.5, we have

$$
\frac{\left(n\left|c_{0}\right| x+\left|c_{1}\right| t^{2}\right)(x+t)}{\left(x^{2}+t^{2}\right) n\left|c_{0}\right|+2 x\left|c_{1}\right| t^{2}} \leq \frac{\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)(\rho+t)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}} .
$$

Again using (2.17) in (2.16), we get

$$
\begin{align*}
I \leq \frac{n(\rho+t)}{(r+t)^{n}} & \frac{\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}} \int_{r}^{\rho}(x+t)^{n-1} d x \\
& =(\rho+t) \frac{\left(n\left|c_{0}\right| \rho+\left|c_{1}\right| t^{2}\right)}{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 \rho\left|c_{1}\right| t^{2}}\left\{\left(\frac{\rho+t}{r+t}\right)^{n}-1\right\} . \tag{2.18}
\end{align*}
$$

Again, from the value of the integral on the right hand side of inequality (2.11) in the proof of Lemma 2.8, the value of the integral (2.15) is $\left[\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right]$, and the conclusion of the lemma immediately follows from inequality (2.18).

Lemma 2.11. If $f(z)$ is a polynomial of degree n and $g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$, then for each $\alpha, 0 \leq \alpha<2 \pi$ and $r>0$, $\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|g^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} f^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta d \alpha \leq 2 \pi n^{r} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{r} d \theta$

The above lemma is due to Aziz and Rather [2].
Lemma 2.12. Let z be complex and independent of α, where α is real, then for $p>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+z e^{i \alpha}\right|^{p} d \alpha=\int_{0}^{2 \pi}\left|e^{i \alpha}+|z|\right|^{p} d \alpha \tag{2.20}
\end{equation*}
$$

This lemma belongs to Gardner and Govil [6].

3. PROOF OF THE THEOREM

Since the polynomial $f(z)$ has no zero in $|z|<t, t>0$, the polynomial $F(z)=f(\rho z)$ has no zero in $|z|<\frac{t}{\rho}, \frac{t}{\rho} \geq 1$. By applying Lemma 2.2 to $F(z)$, we have for $|z|=1$,

$$
\begin{equation*}
\frac{t}{\rho}\left|F^{\prime}(z)\right| \leq\left|G^{\prime}(z)\right| \text { for }|z|=1 \tag{3.1}
\end{equation*}
$$

where $G(z)=z^{n} \overline{F\left(\frac{1}{\bar{z}}\right)}$.

We can easily verify that for every real number α and $R \geq r^{\prime} \geq 1$,

$$
\left|R+e^{i \alpha}\right| \geq\left|r^{\prime}+e^{i \alpha}\right|
$$

This implies for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|R+e^{i \alpha}\right|^{q} d \alpha \geq \int_{0}^{2 \pi}\left|r^{\prime}+e^{i \alpha}\right|^{q} d \alpha \tag{3.2}
\end{equation*}
$$

For points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $P^{\prime}\left(e^{i \theta}\right) \neq 0$, we denote

$$
\begin{gathered}
R=\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}\right|, \quad \text { and } r^{\prime}=\frac{k}{\rho} \text { then from (3.1), } \\
R \geq r^{\prime} \geq 1
\end{gathered}
$$

Now, we have for each $q>0$,

$$
\begin{gather*}
\int_{0}^{2 \pi}\left|G^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} F^{\prime}\left(e^{i \theta}\right)\right|^{q} d \alpha=\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}\left|\frac{G^{\prime}\left(e^{i \theta}\right)}{F^{\prime}\left(e^{i \theta}\right)}+e^{i \alpha}\right|^{q} d \alpha \\
=\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}| | \frac{G^{\prime}\left(e^{i \theta}\right)}{F^{\prime}\left(e^{i \theta}\right)}\left|+e^{i \alpha}\right|^{q} d \alpha \text { (by Lemma 2.12) } \\
\geq\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}\left|\frac{t}{\rho}+e^{i \alpha}\right|^{q} d \alpha,[\text { by (3.2)] } \tag{3.3}
\end{gather*}
$$

For points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $F^{\prime}\left(e^{i \theta}\right)=0$, inequality (3.3) trivially holds.

Now using (3.3) in Lemma 2.11, we obtain for each $q>0$,

$$
\int_{0}^{2 \pi}\left|\frac{t}{\rho}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{q} d \theta
$$

which is equivalent to

$$
\begin{aligned}
& \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
& \quad \leq n S_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}},
\end{aligned}
$$

where

$$
S_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{t}{\rho}+e^{i \alpha}\right|^{q} d \alpha\right\}^{-\frac{1}{q}}
$$

Since $F(z)=f(\rho z), F^{\prime}(z)=\rho f^{\prime}(\rho z)$,

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq \frac{n}{\rho} S_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}
$$

This in conjunction with Lemma 2.8 and noting $\frac{S_{q}}{\rho}=T_{q}$,
we obtain

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq n T_{q}\left\{\frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \left[\left|f\left(r e^{i \theta}\right)\right|+M(f, r)\right.\right.
$$

$$
\left.\left.\times\left\{\left\{\frac{\left(\rho^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| \rho}{\left(r^{2}+t^{2}\right) n\left|c_{0}\right|+2 t^{2}\left|c_{1}\right| r}\right\}^{\frac{n}{2}}-1\right\}\right]^{q} d \theta\right\}^{\frac{1}{q}}
$$

This completes the proof of the Theorem.

REFERENCES

[1] Arestov V.V., "On inequalities for trigonometric polynomials and their derivative" IZV. Akad. Nauk. SSSR. Ser. Math., 45, 1981, pp.3-22.
[2] Aziz A. and Rather N.A., 'Some Zygmund type L^{q} inequalities for polynomials', J. Math. Anal. Appl., 289, 2004, pp. 14-29.
[3] Bidkham M. and Dewan K.K., 'Inequalities for a polynomial and its derivative'", J. Math. Anal. Appl., 166, 1992, pp. 14-29.
[4] de-Bruijn N.G., ''Inequalities concerning polynomials in the complex domain'’, Nederl. Akad. Wetench. Proc. Ser. A, 50, 1947, pp. 1265-1272, Indag. Math., 9, 1947, pp. 591-598.
[5] Dewan K.K. and Mir A., "On the maximum modulus of a polynomial and its derivatives', Inter. Jour. Math. Math Scs, 16, 2005, pp. 2641-2645.
[6] Gardner R.B. and Govil N.K., "An L^{p} inequality for a polynomial and its derivative'", J. Math. Anal. Appl., 194, 1995, pp.720-726.
[7] Gardner R.B. and Weems Amy, A Bernstein-type of L^{p} inequality for a certain class of polynomials, J. Math. Anal. Appl., 219, 1998, pp. 472-478.
[8] Govil N.K. and Rahman Q.I., 'Functions of exponential type not vanishing in a half-plane and related polynomials'", Trans. Amer. Math. Soc., 137, 1969, pp. 501-517.
[9] Govil N.K., Rahman Q.I. and Schmeisser G., ''On the derivative of a polynomial'’, Illinois J. Math., 23, 1979, pp. 319-329.
[10] Jain V.K., Converse of an extremal problem in polynomial II, Jour. Ind. Math. Soc., 60, 1994, pp. 41-47.
[11] Jain V.K., On maximum modulus of polynomials with zeros outside a circle, Glasnik Matematicki, 29, 1994, pp. 267-274.
[12] Lax P.D., Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50, 1944, pp. 509-513.
[13] Malik M.A., On the derivative of a polynomial, J. London Math. Soc., 1, 1969, pp. 57-60.
[14] Milovanovic G.V., Mitrinovic D.S. and Rassias Th. M., '‘Topics in polynomials, Extremal properties, Inequalities, Zeros'', World Scientific Publishing Co., 1994, Singapore.
[15] Qazi M.A., 'On the maximum modulus of polynomials', Proc. Amer. Math. Soc., 115, 1992, pp. 337-343.
[16] Rahman Q.I. and Schmeisser G., " L p inequalities for polynomials', J. Approx. Theory, 53, 1988, pp. 26-32.
[17] Rather N.A., Extremal properties and location of the zeros of polynomials, Ph.D. Thesis, 1998, University of Kashmir.
[18] Rudin W., 'Real and complex Analysis', Tata McGraw- Hill Publishing Company, 1977, (Reprinted in India).
[19] Schaeffer A.C., "Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions, "Bull, Amer. Math. Soc., 47(8), 1941, pp. 565-579.
[20] Zygmund A., "A remark on conjugate series", Proc. London Math. Soc., 34, 1932 ,pp. 392-400.

