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Abstract: 

If ( )
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υ
υ =

=∑  is a polynomial of degree n which does not 

vanish in z t< , 1t ≥ , then for 0 r tρ< ≤ ≤ , Dewan and Mir 

[ Int. J. Math. Math. Scs., 16(2005), 2641-2645] proved 
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In this paper, we prove an interesting improved 
qL  norm 

inequality with the value of t extending from 1t ≥  to 0t >  of 

the above inequality. Our result also gives some interesting 

known results as corollaries.   

1. INTRODUCTION 

Let 
0

( )
n

f z c z
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υ
υ =

=∑  be a polynomial of degree n  and ( )f z′  be 

its derivative. We define  
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∫         (1.1) 

If we let q → ∞ in the above equality and make use of of the 

well-known fact from analysis [17] that  
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∫ ,  

we can suitably denote  
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Similarly, one can define ( )
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∫

and show  that
00

lim
qq

f f
→ +

= . It would be of further interest 

that by taking limits as 0q → + , the stated result holding for

0q > , holds fo 0q =  as well. 

For 0r > , we denote by ( ) ( ), max
z r

M f r f z
=

=  and 

accordingly  ( ) ( )
1

max ,1
z

f f z M f
∞ =

= = . 

A famous result due to Bernstein [14 or also see 19] states that 

if ( )f z  is a polynomial of degree n , then 

                            f n f
∞ ∞

′ ≤ .        (1.2)   

Inequality (1.2) can be obtained by letting q → ∞  in the 

inequality 

                       
q q

f n f′ ≤ .              (1.3)   

Inequality (1.3) for 1q ≥ is due to Zygmund [20]. Arestov [1] 

proved that (1.3) remains valid for 0 1q< <  as well. 

If we restrict ourselves to the class of polynomials having no 

zero in 1z < , then inequalities (1.2) and (1.3) can be 

respectively improved by  
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n
f f

∞ ∞
′ ≤ .                  (1.4)  

and 
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q

n
f f q

z
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+
.             (1.5)  

Inequality (1.4) was conjectured by Erdös and later verified by 

Lax [12], whereas, inequality (1.5) was proved by de-Bruijn [4] 
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for 1q ≥ . Rahman and Schmeisser [16] showed that (1.5) 

remains true for 0 1q< < . 

As a generalization of (1.4), Malik [13] proved that if ( )f z  

does not vanish in z t< , 1t ≥ , then   

                          
1

n
f f

t∞ ∞
′ ≤

+
.              (1.6) 

Under the same hypotheses of the polynomial ( )p z , Govil and 

Rahman [8] extended inequality (1.6) to 
q

L  norm by showing 

that 
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+
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It was shown by Gardner and Weems [7] and independently by 

Rather [17] that (1.7) also holds for 0 1q< < . 

Further, as a generalization of (1.6), Bidkham and Dewan [3] 

proved that if ( )f z  is a polynomial of degree n having no zero 

in z t< , 1t ≥ , then for1 r t≤ ≤ ,  
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For the same class of polynomials
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=∑ , by involving 

certain coefficients, Dewan and Mir [5] improved as well as 

generalized inequality (1.8) by proving  
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for  0 r tρ≤ ≤ ≤ .                                                        

In this paper, we prove an improved inequality in 
qL norm for 

extended value of 0t > , which not only reduces to
qL version of 

inequality (1.9) as a particular case, but also gives some 

interesting known results as corollaries. More precisely, we 

prove 

Theorem. If 
0

( )
n

f z c z
υ

υ
υ =

=∑  is a polynomial of degree n  
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where 
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Remark 1.1. If we let q → ∞ on both sides of inequality (1.10) 

of our theorem, as mentioned earlier, we obtain an improved 

counterpart of inequality (1.9) as given below. 

Corollary 1.1.  If 
0
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υ =

=∑  is a polynomial of degree n

having no zero in z t< , 0t > , then for 0 r tρ≤ ≤ ≤ .  
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Remark 1.2. If 0 r tρ≤ < ≤ , we have 
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Also, for r ρ= , inequality (1.12) holds trivially and hence 

inequality (1.12) is true for 0 r tρ≤ ≤ ≤ . By Lemma 2.10, we 

have 
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It is interesting that by using this inequality in inequality (1.10), 

we obtain the direct 
qL analogue of (1.9) due to Dewan and 

Mir [5] with extended value of the radius t of the zero free 

open disc from 1t ≥ to 0t > .   
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Remark 1.3. Taking limit as q → ∞  on both sides of (1.14), 

we obtain inequality (1.9).    

Remark 1.4. If we use the fact that 

( ) ( ) ( ),if re M f r f rzθ

∞
≤ = for each [ )0, 2θ π∈ , we 

obtain another improved version of inequality (1.9) in 
qL norm 

deduced from our theorem.   
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Remark 1.5. Putting 1r = and replacing ρ by r in corollary 

1.3, we have an improvement of (1.8). Further, putting

1 r ρ= = , corollary 1.2 reduce to inequality (1.7).  Also 

assigning1 r kρ= = = , both the theorem and corollary 1.2 

reduce to the well-known de- Bruijn inequality (1.5). 

2. LEMMA 

The following lemmas are needed for the proof of the theorem. 

Lemma 2.1. If ( )
1
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f z c z
υ

υ
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=∑  is a polynomial of degree n 

having no zero in z t< , 1t ≥ , then  
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′ ≤

+
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This result is due to Malik [13]. 
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Lemma 2.2. If ( )
1
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f z c z
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υ
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=∑  is a polynomial of degree n 

having no zero in z t< , 1t ≥ , then for 1z = , 
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where ( )
1ng z z f
z

 
=  

 
. 

 Malik [13, Lemma 3] proved this lemma. 
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=∑  is a polynomial of degree n 

having no zero in z t< , 1t ≥ , then  
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This result was proved by Govil at. el. [9].  

Lemma 2.4. If ( ) 0
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= +∑ ,1 nµ≤ ≤ , is a polynomial 

of degree n having no zero in z t< , 1t ≥ , then 
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Lemma 2.3 is due to Qazi [15, Remark 1].  
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is a non-decreasing function of x  in ( ]0,t . 

Proof of Lemma 2.5. We prove this by derivative test. Now, 

we have 

( )
( )

( ){ }
( ) ( ) ( )( ){ }

0 1

2
2 2 2

0 1

2 2 3

0 1 0 1

2

,

n c c t
p x

x t n c t c x

t x t n c x c t n c c t t x t

−
′ =

+ +

× − + + + +

 

 which is non-negative, since by Lemma 2.4, for 1µ = ,  
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This lemma is due to Jain [10].                 
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 which clearly implies that the bound of Lemma 2.7 improves 

over that of Lemma 2.6.  
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Proof of Lemma 2.8. Since ( )f z does no vanish in z t< ,

0t > , the polynomial ( ) ( )F z f xz=  where 0 x t< ≤  has no 

zero in 
t

z
x
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≥ . Hence applying Lemma 2.3 to 

the polynomial ( )F z , we get 
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from which it is implied by triangle inequality that  

( ) ( ) ( )

( )
( )

2 2 2 2
0 1

2 2 2

0 1

,

2
1

2

i i

n

f e f re M f r

t n c t c

r t n c t c r

θ θρ

ρ ρ

≤ +

 
 + +  

× −  
+ +   

 

, 

 which completes the proof of Lemma 2.8. 
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Proof of Lemma 2.9. We have 
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Now 
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Using (2.14) in the right hand side (2.13), we get the required 

result. 
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where δ is as defined in Lemma 2.7. 

Proof of Lemma 2.10.  

Consider the integral 
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Again using (2.17) in (2.16), we get  

( )

( )

( )
( )

( )
2

0 1 1

2 2 2

0 12

n

n

r

n c c tn t
I x t dx

t n c c tr t

ρρρ

ρ ρ

−++
≤ +

+ ++
∫  

              ( )
( )

( )

2

0 1

2 2 2

0 1

1
2

nn c c t t
t

r tt n c c t

ρ ρ
ρ

ρ ρ

+  +  
= + −  

++ +    
. 

(2.18) 

Again, from the value of the integral on the right hand side of 

inequality (2.11) in the proof of Lemma 2.8, the value of the 

integral (2.15) is
( )
( )

2 2 2 2
0 1

2 2 2

0 1

2
1

2

n

t n c t c

r t n c t c r

ρ ρ
 
 + +  

−  
+ +   

 

, and the 

conclusion of the lemma immediately follows from inequality 

(2.18).   

Lemma 2.11. If  ( )f z  is a polynomial of degree n  and

( )
1n

g z z f
z

 
=  

 
, then for eachα , 0 2α π≤ <  and 0r > ,  

( ) ( ) ( )
2 2 2

0 0 0

2
r r

i i i r i
g e e f e d d n f e d

π π π
θ α θ θθ α π θ′ ′+ ≤∫ ∫ ∫

.    

                                                            (2.19) 

The above lemma is due to Aziz and Rather [2]. 

Lemma 2.12. Let z be complex and independent ofα , where 

α is real, then for 0p > , 

            
2 2

0 0

1
p p

i i
ze d e z d

π π
α αα α+ = +∫ ∫ .     (2.20) 

This lemma belongs to Gardner and Govil [6]. 

3. PROOF OF THE THEOREM  

Since the polynomial ( )f z has no zero in z t< , 0t > , the 

polynomial ( ) ( )F z f zρ=  has no zero in 
t

z
ρ

< , 1
t

ρ
≥ . By 

applying Lemma 2.2 to ( )F z , we have for 1z = ,  
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                    ( ) ( )
t

F z G z
ρ

′ ′≤  for 1z = ,       (3.1)

 where ( )
1nG z z F
z

 
=  

 
. 

We can easily verify that for every real number α  and

1R r′≥ ≥ , 

                                          i i
R e r e

α α′+ ≥ + . 

This implies for each 0q > , 

                    
2 2

0 0

q q
i i

R e d r e d

π π
α αα α′+ ≥ +∫ ∫ .  (3.2)  

For points i
e

θ , 0 2θ π≤ < , for which ( ) 0i
P e

θ′ ≠ ,we denote  

       
( )
( )

i

i

Q e
R

P e

θ

θ

′
=

′
, and 

k
r

ρ
′ =  then from (3.1), 

                   1R r′≥ ≥ .  

Now, we have for each 0q > , 

( ) ( ) ( )
( )
( )

2 2

0 0

q
i

q q
i i i i i

i

G e
G e e F e d F e e d

F e

θπ π
θ α θ θ α

θ
α α

′
′ ′ ′+ = +

′∫ ∫ . 

         ( )
( )
( )

2

0

q
i

q
i i

i

G e
F e e d

F e

θπ
θ α

θ
α

′
′= +

′∫  (by Lemma 2.12) 

                          ( )
2

0

q
q

i it
F e e d

π
θ α α

ρ
′≥ +∫ , [by (3.2)] .    

        (3.3) 

For points i
e

θ , 0 2θ π≤ < , for which ( ) 0
i

F e
θ′ = , inequality 

(3.3) trivially holds. 

Now using (3.3) in Lemma 2.11, we obtain for each 0q > ,  

 ( ) ( )
2 2 2

0 0 0

2

q
q q

i i q it
e d F e d n F e d

π π π
α θ θα θ π θ

ρ
′+ ≤∫ ∫ ∫ , 

which is equivalent to  

                   

( )

( )

1
2

0

1
2

0

1

2

1
,

2

qq
i

qq
i

q

F e d

nS F e d

π
θ

π
θ

θ
π

θ
π

  
′ 

  

  
≤  

  

∫

∫

 

where  

                   

1

2

0

1

2

q q

i

q

t
S e d

π
α α

π ρ

−
  

= + 
  

∫ . 

Since ( ) ( )F z f zρ= , ( ) ( )F z f zρ ρ′ ′= , 

( ) ( )

1 1
2 2

0 0

1 1

2 2

q qq q
i i

q

n
f e d S f e d

π π
θ θρ θ ρ θ

π ρ π

      
′ ≤   

      
∫ ∫ , 

This in conjunction with Lemma 2.8 and noting 
q

q

S
T

ρ
= ,  

we obtain 

( ) ( ) ( )

( )
( )

1
2 2

0 0

1

2 2 2 2
0 1

2 2 2

0 1

1 1
,

2 2

2
1

2

qq
i i

q

q qn

f e d nT f re M f r

t n c t c
d

r t n c t c r

π π
θ θρ θ

π π

ρ ρ
θ

     ′ ≤ +       

 
 + +    

× −   
+ +    

  

∫ ∫

 

This completes the proof of the Theorem.  
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